MINIMIZE YOUR FOOTPRINT AND YOUR MAINTENANCE HEADACHES

SELF CLEANING TRENCH TYPE WET WELL DESIGNS

Trooper W. Smith, P.E.
Mukesh R. Pratap, P.E.
Freese and Nichols, Inc.
1701 North Market Street, Suite 500 LB51
Dallas TX 75202
AGENDA

1. Presentation Objectives
2. Project Background
3. Pump Station Evaluation
4. Trench Type Wet Well
5. Construction Updates
6. Acknowledgements / Questions
PRESENTATION OBJECTIVES

- Introduction to Trench Type Wet Wells
- Introduction to Self Cleaning Operation
- Why Factor?
PROJECT SCOPE

- Trinity River Authority
 - CRWS Treatment Plant

- Design and Construction of Pump Station 13B

- Fluid of Interest: Return Activated Sludge
 - Final Clarifiers – Traveling Bridge Suction Clarifiers

- Firm Capacity - 50 MGD
 - PS-13 – 50 MGD (North Plant, Trains 1-3)
 - PS-13B – 50 MGD (North Plant, Trains 4-6)
 - PS-13A – 100 MGD (South Plant, Trains 7-12)
HISTORY OF THE PROJECT

YEAR 2005
FEASIBILITY REPORT

YEAR 2006
PRELIMINARY DESIGN REPORT

YEAR 2007
FINAL DESIGN

YEAR 2007 to 2009
CONSTRUCTION PHASE
1. Presentation Objectives
2. Project Background
3. Pump Station Evaluation
4. Trench Type Wet Well
5. Construction Updates
6. Acknowledgements / Questions
PUMP STATION EVALUATION

- **Dry-Pit/Wet-Pit**
 - Horizontal Non-Clog Centrifugal Pumps (PS-13 and PS-13A)
 - Vertical Non-Clog Centrifugal Pumps (PS-6 and 6A)

- **Wet-Pit**
 - Vertical Turbine Solids Handling Pumps (VTSH)
Pump Station 13A – Horizontal Non-Clog Centrifugal Pumps (Wet Pit/Dry Pit)
Pump Station 13A

Horizontal Non-Clog Centrifugal Pump (PS-13A)

Vertical Non-Clog Centrifugal Pumps (PS-6 and 6A)
City of Phoenix, 23rd Ave. WWTP
(36-inch VTSH Pumps)
LIMITATIONS AT PS-13B SITE

- 60-inch Final Clarifier Effluent line
- 84-inch Primary Clarifier Effluent line
- Electrical Duct Bank
- Caustic Soda Tank
- 2-inch to 12-inch Lines
- 12-foot Roadway

Existing Structures and Utilities
DRY PIT VERSUS WET PIT

Relocated Pavement

Relocated 60-inch FCE Line

Relocated Caustic Soda Building

Footprint of Dry-Pit/Wet-Pit (Horizontal Non-Clog Pumps)

Relocated 84-inch PCE Line
Footprint of Wet-Pit Wetwell (VTSH Pumps)

Existing Caustic Soda Storage Facility, 84-inch PCE Line, 60-inch FCE Line and Pavement Remains Unchanged
DRY PIT VERSUS WET PIT

<table>
<thead>
<tr>
<th>Pump Station Type</th>
<th>Length/Width</th>
<th>Depth</th>
<th>Pump Cost ($)*</th>
<th>OPCC ($)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Non-Clog Centrifugal Pump Station (Wet Pit/Dry Pit)</td>
<td>67’/65’</td>
<td>26’</td>
<td>$915,000</td>
<td>$10.9 million</td>
</tr>
<tr>
<td>Vertical Non-Clog Centrifugal Pump Station (Wet Pit/Dry Pit)</td>
<td>59’/54’</td>
<td>~ 35’</td>
<td>$945,000</td>
<td>$11.4 million</td>
</tr>
<tr>
<td>VTSH Pump Station (Wet Pit)</td>
<td>49’/43’</td>
<td>29’</td>
<td>$1,718,000</td>
<td>$9.5 million</td>
</tr>
</tbody>
</table>

* Total Pump Cost for 3 Pumps
** OPCC: Opinion of Probable Construction Cost
1. Presentation Objectives
2. Project Background
3. Pump Station Evaluation
4. Trench Type Wet Well
5. Construction Updates
6. Acknowledgements / Questions
- Suitable for Design Flows > 3 MGD
- Pump Intakes, Confined in a Deep, Narrow Trench
- Pump Intakes, Substantially Lower Than Upstream Inlet Pipe
- Suitable for Different Pump Types/Arrangements
Advantages
- Hydraulic Environment for Pump Intakes
- Minimum Footprint Size
- Small Floor Area (Minimum accumulation of sludge or grit)
- Ease and Quickness of Cleaning

Disadvantages
- Compact, Minimal Storage Capacity
- Increased Depth
- Clogging if Pumps Not Used
TRENCH TYPE WETWELL

- Invented by D.H. Caldwell (1964)

- 1998 Breakthrough
 - 2nd Edition of Pumping Station Design
 - ANSI/HI 9.8 Pump Intake Design
Illustrative View of Kirkland Pump Station (Washington)
1:1 scale model of portion of a trench floor

- Result: >5fps requirement

1:3.3 scale model of the Kirkland Pump Station

- Result: Only a small portion of the sand was ejected at pump down until equilibrium
Wet Pit versus Trench Type Pump Station

<table>
<thead>
<tr>
<th>Pump Station Type</th>
<th>Length/Width</th>
<th>Depth (Feet)</th>
<th>Pump Cost ($)</th>
<th>OPCC ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Pit Pump Station</td>
<td>49’/43’</td>
<td>30’</td>
<td>$1,718,000</td>
<td>$9.5 Million</td>
</tr>
<tr>
<td>Trench Type Wet Well Pump Station</td>
<td>57’/18’</td>
<td>38’</td>
<td>$1,718,000</td>
<td>$8.5 Million</td>
</tr>
</tbody>
</table>

* Total Pump Cost for 3 Pumps
** OPCC: Opinion of Probable Construction Cost
Wet Well Plan Elevation at 415.00'

Wetwell Trench

Flow Splitter
SECTION VIEWS

- Trench
- Water Guide
- Sloping Walls
- Flow Splitter
- Fillet
4 fps (wet pit)
3 fps (dry pit)

1 fps max above trench

Illustrative Section of Pump Station 13B – Normal Operation
Mixes sludge and scum into a mass that is ejected by the last pump.
Illustrative Section of Pump Station 13B – Cleaning Cycle (Pump Down)
Illustrative Section of Pump Station 13B – Cleaning Cycle (Pump Down)
Illustrative Section of Pump Station 13B – Cleaning Cycle (Pump Down)
Scenario 1
- 1 clarifier
- 16 MGD
- Sluice gate for proper flow rate
- Use last pump

Scenario 2A
- 2-3 clarifiers
- 32-50 MGD
- 2 pumps at full speed, let turbulence do the cleaning

Scenario 2B
- 2-3 clarifiers
- 32-50 MGD
- Sluice gate for proper flow rate
- Use last pump
1. Presentation Objectives
2. Project Background
3. Pump Station Evaluation
4. Trench Type Wet Well
5. Construction Updates
6. Acknowledgements / Questions
CONSTRUCTION UPDATE

March 12, 2008
1. Presentation Objectives
2. Project Background
3. Pump Station Evaluation
4. Trench Type Wet Well
5. Construction Updates
6. Acknowledgements / Questions
ACKNOWLEDGEMENTS

- Trinity River Authority of Texas
- *Pumping Station Design, 3rd Edition*

 Editor-in-Chief: Garr M. Jones, P.E.
 Co-Editors: Dr. Robert L. Sanks, Ph.D., P.E.
 Dr. George Tchobanoglous, Ph.D., P.E.
 Bayand E. Bosserman II, P.E.

- Dr. Robert L. Sanks, Ph.D., P.E. (Quality Control)
- Dr. Joel E. Cahoon, Ph.D., P.E., Montana State University
Questions

Contact Information
Trooper Smith, tws@freese.com, 214-217-2219
Mukesh Pratap, mrp@freese.com, 214-217-2208