New Sight for Old Pipes
Background

2000-2014
The Problem

- $2 million spent on cleaning large lines
- Drawbacks to existing testing methods
- Limited budget for rehabilitation
The Solution: Multi Sensor Inspection
Innovative Technology

HD Camera Module

3D Laser Module

Sonar Module
Inspection Technology

HD CCTV

Sonar

3D Laser
• Determine sources of data (construction files, pipe material standards, staff knowledge)
• Develop data hierarchy flagging
• Confirm connectivity shown in GIS
Discrepancies Found during Research

Original GIS Configuration

Current As-Built Data

Updated GIS Configuration
- GIS Data in Complex Layout was not QC’d previously.
- GIS was modified to represent actual layout.
Data Needs for Multi-Sensor Inspection

- Pipe age
- Pipe material
- Wall thickness
- Number of rows of steel reinforcing
- Placement of steel cage(s)
Determining Remaining Useful Life

- Developed for each concrete pipe wall specification
- Condition score for concrete pipes based on location of steel reinforcement cage
- Developed in AutoCAD to maintain a 1:1 scale

[Image of a chart showing the remaining useful life scoring system for different concrete pipe specifications.]
Remaining Useful Life

- **Inner Pipe Wall**
- **Reinforcement Cages**
- **Outer Pipe Wall**

39" Class III, Wall B
- **71-100 years**
- **41-70 years**
- **11-40 years**
- **3-10 years**
- **0-2 years**

39" Class III, Wall B w/ Wall A Steel
- **71-100 years**
- **41-70 years**
- **11-40 years**
- **3-10 years**
- **0-2 years**
RUL Calculated Based on Data

Outer Wall

Estimated Original Inner Wall

Measured Inner Wall

1.25" of Pipe Wall Remaining
Remaining Useful Life
Pipe Age vs. Remaining Useful Life

- 71-100 years for 2013 (1921)
- 41-70 years for 2013 (1921)
- 11-40 years for 2012 (1921)
- 3-10 years for 2012 (1921)
- 0-2 years for 1993 (1913)
Case Study: Significant Wall Loss

699.9ft General Observation - Corrosion to 2.6"

730.8ft Point of Interest - Rebar apparent

739ft Maximum Corrosion - To 3.0"

749.9ft General Observation - Corrosion to 2.9"

799.9ft General Observation - Corrosion to 2.3"
Case Study: Structural Failures

387.6ft Point of Interest - Cavity in soffit to 3.9"

380.4ft Point of Interest - Cavity moves into depression within soffit to 6.1"

378ft 3D Laser Scan - Cavity moving into depression visible

350.1ft General Observation - Corrosion to 1.6"

301.4ft Point of Interest - Hole in soffit

301.4ft Point of Interest - Hole in soffit
Case Study: Ovality in Flexible Pipe
Case Study: Ovality in Rigid Pipe
Our Progress – 162 miles (62%)
Benefits of Multi Sensor Inspection

- Reduced capital improvements costs
- Reduced operations and maintenance costs
- Enhanced knowledge of asset status and life cycle
Reduced Capital Improvements

• Restoring capacity through detailed cleaning and debris removal

• Replacing portions of interceptors instead of the whole interceptor
Reduced Capital Improvements

Only 11.7% needed repairs
Identified over $26M in CIP savings

Year 1: $15,728,420
Year 2: $13,430,370
Year 3: $13,998,470
Year 4: $5,562,440

Manhole to manhole replacement cost
Replace only portion in poor condition
Reduced O&M Costs

Reduction in:

• Emergency repairs and reactive maintenance

• Odor control chemicals and facilities

• “Cleaning to inspect” vs. “inspecting to clean”
Line Failure Savings to Date

ICAP Failures to Date (direct)
- Main 253: $487,000 +/-
- Main 244-B: $63,000 +/-
- Main 402-B: $64,000
- Total: $614,000

(Average cost per failure: $204,667)

Segment Failure Savings to Date
$3.15 to $6.30 Million

Cost Failures Estimated at $50,000 - $100,000 each.
Reduced Cleaning Costs

$5.89 million saved
Enhanced Knowledge of Assets

- Remaining useful life linked to GIS
- Baseline condition assessment
- Improved hydraulic model
Improved CIP Scheduling
Improved Hydraulic Model

Modeled depth higher than field measurements

Observations

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Debris Depth</td>
<td>2 in</td>
</tr>
<tr>
<td>Average Water Level</td>
<td>15 in</td>
</tr>
<tr>
<td>Debris Volume</td>
<td>8 cubic feet</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>MainLat</th>
<th>USSN</th>
<th>DSSN</th>
<th>Dia</th>
<th>Mat</th>
<th>Wall Thickness (in)</th>
<th>Row 1 Steel (in)</th>
<th>Row 2 Steel (in)</th>
<th>Dry Weather Depth (in)</th>
<th>Avg Dry Weather Max Depth (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M00257R*</td>
<td>103+35</td>
<td>097+06</td>
<td>54</td>
<td>Fiberglass</td>
<td>1.2</td>
<td>0.00</td>
<td></td>
<td>21.98</td>
<td>24.68</td>
</tr>
<tr>
<td>M00257R*</td>
<td>097+06</td>
<td>095+70</td>
<td>54</td>
<td>Fiberglass</td>
<td>1.2</td>
<td>0.00</td>
<td></td>
<td>24.11</td>
<td>26.80</td>
</tr>
<tr>
<td>M00257R*</td>
<td>095+70</td>
<td>095+19</td>
<td>39</td>
<td>Fiberglass</td>
<td>1.2</td>
<td>0.00</td>
<td></td>
<td>25.31</td>
<td>27.98</td>
</tr>
<tr>
<td>M00257R*</td>
<td>003+00</td>
<td>002+00</td>
<td>54</td>
<td>Fiberglass</td>
<td>1.2</td>
<td>0.00</td>
<td></td>
<td>16.34</td>
<td>18.89</td>
</tr>
<tr>
<td>M00503*</td>
<td>492+49</td>
<td>485+22</td>
<td>36</td>
<td>Concrete</td>
<td>5.75</td>
<td>2.50</td>
<td>4.75</td>
<td>22.16</td>
<td>25.27</td>
</tr>
</tbody>
</table>

Inspection Distance (ft)

- **Water Level**:
 - M00257R*: 21.98
 - M00257R*: 24.11
 - M00257R*: 25.31
 - M00257R*: 16.34
 - M00503*: 22.16

- **Debris Level**:
 - M00257R*: 24.68
 - M00257R*: 26.80
 - M00257R*: 27.98
 - M00257R*: 18.89
 - M00503*: 25.27
Lessons Learned

- Data needed for MSI inspection should be maintained for all newly installed pipelines, linked to City geodatabase.

- Supporting data, such as pipe lay sheets, shop drawings, etc. should be stored digitally and with standard naming convention.
Lessons Learned

- City to require submittal of GIS shapefile of completed pipelines and PDF of plans
- Verification of connectivity shown in GIS is essential.
- Age is not an indicator of condition.
Trooper Smith, P.E., ENV SP
trooper.smith@freese.com

Mazen Kawasmi, P.E.
Mazen.kawasmi@freese.com