Pump Station Design
TAWWA / WEAT San Antonio Young Professionals Seminar - Design Fundamentals

David Bennett, P.E.
Freese and Nichols, Inc.
November 16, 2010
Agenda

- Hydraulic Theory / Terminology
- System and Pump Curves
- Pump Performance
- Pump Types (Water) and Selection
- Pump Station Design & Layout
Introduction

- **What is a pump?**
 - A machine that imparts kinetic and potential energy to a liquid to force a discharge from the machine.
 - A machine that moves a volume of liquid from a lower to higher elevation or energy level.
 - A machine that moves liquid along a pipeline.
Hydraulic Theory/Terminology Energy Equation

- General form:
 - \(E_T = E_p + E_v + E_z \)

- Conservation of energy
 - \(E_1 = E_2 \)

- Including losses & pumps:
 - \(E_{p1} + E_{v1} + E_{z1} + E_A = E_{p2} + E_{v2} + E_{z2} + E_f \)

- In terms of pressure head:
 - \(H_{p1} + H_{v1} + H_{z1} + H_A = H_{p2} + H_{v2} + H_{z2} + H_f \)
Hydraulic Theory/Terminology

- **Open to Atmosphere**
 - $H_{p1} = H_{p2} = 0$

- **For Large Reservoir**
 - $H_{v1} = H_{v2} = 0$

- **Simplified equation**
 - $H_{z1} - H_{f1} + H_A - H_{f2} = H_{z2}$
Hydraulic Theory/Terminology
Friction and Minor Losses

- Hazen-Williams:
 \[H_f = \frac{(0.002083L \times (100/C)^{1.85} \times Q^{1.85})}{D^{4.87}} \]

- Darcy-Weisbach:
 \[H_f = f \frac{L v^2}{2Dg} \]

- Minor Losses
 - Flow through valves, fittings, bends
 - Changes in flow path, direction, size
 - Minor losses are negligible in long pipelines
Hydraulic Theory/Terminology
Pumping Terms

- Static suction head / lift
- Head Terms
 - Discharge Head \((H_A) \)
 - Static Head \((H_z) \)
 - Pressure Head \((H_p) \)
 - Velocity Head \((H_v) \)
 - Friction Head \((H_f) \)
- Energy Grade Line (EGL)
 - \(EGL = H_p + H_v + H_z + H_f \)
- Hydraulic Grade Line (HGL)
 - \(HGL = H_p + H_z + H_f = EGL - H_v \)
- Total Dynamic Head (TDH)
 - \(TDH = \text{Static} (H_z) + \text{Friction} (H_f) \)
System and Pump Curves
System Curve Determination

- Determine static head
- Determine pipe size and length
- Quantify friction and minor losses
- Plot sum of:
 - Static head
 - Friction head from piping and minor losses
System and Pump Curves
System Curve Generation

Plot: $H_z + H_f$ vs. Q

- H_f: Friction Head
- H_z: Static Head
- TDH: Total Dynamic Head

$H_f = \text{Friction Head}$
$H_z = \text{Static Head}$
$\text{TDH} = H_z + H_f$

Flow (mgd)

Head (feet)
System and Pump Curves
Multiple System Curves

Plot System Curves for each Static Head condition
System and Pump Curves
Pump and System Curves

- System ALWAYS runs at the intersection of the Pump and System Curves
System and Pump Curves
Pump and System Curves

1 - PUMP

2 - PUMPS IN PARALLEL

3 - PUMPS IN PARALLEL

Parallel Pumps
Add Q at given H

Flow (mgd)
Head (feet)

Maximum Static Head
Average Static Head
Minimum Static Head
1 Pump
2 Pumps
3 Pumps
System and Pump Curves
Pump and System Curves

2 - PUMPS IN SERIES

1 - PUMP

Series Pumps
Add H at Given Q

Maximum Static Head
Average Static Head
Minimum Static Head
1 Pump in Series
2 Pumps in Series
System and Pump Curves
Pump Curves & Performance

- Best Efficiency Point (BEP)
- Preferred Operating Region (POR): 80% to 110% of BEP is ideal
- Allowable Operating Region (AOR): 50% of BEP to runout is OK
- Brake Horsepower (BHP)
- Net Positive Suction Head (NPSH)
Pump Performance

- Water Horsepower
 \[WHP = \frac{\gamma \times Q(cfs) \times H}{550} = \frac{Q(gpm) \times H}{3960} \]

- Brake HP (pump input)
 \[BHP = \frac{Q(gpm) \times H}{3960 \times Ep} \]

- Total HP (wire-to-water)
 \[THP = \frac{Q(gpm) \times H}{3960 \times Ep \times Em} \]

\(\gamma \) = Specific Weight of Water (62.4 lb/ft\(^3\))

\(Q \) = Flow in cfs or gpm

\(H \) = TDH (ft)

\(E_p \) = pump efficiency

\(E_m \) = motor efficiency

\(E_p \times E_m \) = wire-to-water efficiency

* If using VFD, wire-to-water efficiency = \(E_p \times E_m \times E_d \)
Pump Performance

- Cavitation
 - Formation of vapor bubbles
 - Drop below vapor pressure
 - Loss of capacity, noise, vibration damage to pump

- NPSH – TDH of fluid @ suction eye of pump
 - NPSHa – “Available”
 - \(\text{NPSHa} = H_{\text{bar}} + H_s - H_{\text{vap}} - H_f - H_m \)
 - NPSHr – “Required”
 - \(\text{NPSHa} > \text{NPSHr} \)
 - Insufficient NPSHa = Cavitation
Pump Performance
Variable Speed Pumping

Variable Frequency Drive (VFD)

- Affinity Laws (N – rpm)
 - Flow: \[
 \frac{Q_1}{Q_2} = \frac{N_1}{N_2}
 \]
 - Head: \[
 \frac{H_1}{H_2} = \left(\frac{N_1}{N_2}\right)^2
 \]
 - Power: \[
 \frac{BHP_1}{BHP_2} = \left(\frac{N_1}{N_2}\right)^3
 \]
Variable Frequency Drive (VFD)

- **Advantages**
 - Match flow to demand
 - Fewer yet larger pumps
 - Reduced pressure surges
 - Potential for lower operating costs
 - Longer equipment life
 - Reduced inrush current
Disadvantages

- Higher capital / O&M costs
- Increased equipment, larger electrical room
- Less electrical efficiency
- Higher potential for vibration
- Heat dissipation
Common Pump Types
Water Pumps

- Horizontal Centrifugal End Suction
 - End suction, top discharge
 - Wide variety of sizes
 - Low cost
 - Most commonly manufactured pump
 - Many qualified manufacturers
Common Pump Types
Water Pumps

- Horizontal Centrifugal Split Case
 - Casing split axially
 - Rugged, heavy duty
 - High efficiencies
 - Easy to maintain
 - Large footprint
 - Bearings must be protected from dust
Common Pump Types
Water Pumps

- Vertical Turbine – Lineshaft
 - High head capability w/multiple stages
 - Tailor heads by adding bowls or stages
 - Installed in cans or sump
 - Small footprint
 - Tight shaft tolerances
Common Pump Types
Water Pumps

- Vertical Turbine – Submersible
 - Submersible motor mounted at well bottom
 - No shafting or bearings above the bowl assembly
 - Quiet operation
 - Practical at long depths
 - Frequent maintenance requires pulling unit
 - Long electric cables
Pump Selection

- Design and Peak Flows, Pressures
- Operating conditions & system head curves
- Select type, orientation & number of pumps
- Initial pump selection - consult w/manufacturers
- Match pump and system curves
- Efficiencies, Horsepower, NPSH
- Performance curve analysis, operating points
- Capacity and/or Head increase options
Pump Station Layout/Design
Types of Pump Stations - Water

- **Raw Water Intake**
 - Located at lake or river
 - Vertical configuration w/ sump or cans is typical

- **Booster Station**
 - Horizontal or vertical configuration
 - Installed along pipeline to boost pressure

- **High Service**
 - Horizontal or vertical configuration
 - Installed at WTP
 - Complicated hydraulics / system
Pump Station Layout/Design
Station and Site Design

- Sump, Wet Well & Can design
- Piping & Valve design
- Pump control system (motor, drive, valves)
- Power supply (main, standby)
- Instrumentation & SCADA
- HVAC & Ventilation
- Structural Design
- Architectural and Lighting
- Site Design, Access, O&M
References

- Pumping Station Design, 3rd Edition
 - by Sanks, Tchobanoglous, Bosserman
- Pump Handbook, 4th Edition
 - by Karassik, Messina, Cooper, Heald
- Hydraulic Institute Standards (HIS)
- AWWA
- ASTM
- ANSI
Pump Station Design
TAWWA / WEAT San Antonio Young Professionals Seminar - Design Fundamentals

Any Questions??

David Bennett, P.E.
Freese and Nichols, Inc.
San Antonio Office
4040 Broadway Street
Suite 600
San Antonio, Texas 78209
p 210.298.3800
f 210.298.3801
dtb@freese.com
www.freese.com